A europium metal–organic framework for dual Fe3+ ion and pH sensing
Metal–organic frameworks (MOFs) with ratiometric sensing properties are desirable for many applications due to their intrinsic self-calibration. We report the re-assessment of the sensing properties of a MOF, originally reported as containing europium(III) and 2-hydroxyterephtalic acid, and having f...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2022-07, Vol.12 (1), p.11982-11982, Article 11982 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal–organic frameworks (MOFs) with ratiometric sensing properties are desirable for many applications due to their intrinsic self-calibration. We report the re-assessment of the sensing properties of a MOF, originally reported as containing europium(III) and 2-hydroxyterephtalic acid, and having fluorescent ratiometric iron(III) sensing properties. Synchrotron single-crystal X-ray diffraction and proton nuclear magnetic resonance (
1
H NMR) spectroscopy revealed that the MOF is composed of 2-methoxyterephthalate, not 2-hydroxyterephthalate as originally reported. We found that the MOF exhibits a sensor turn-off response towards Fe
3+
ion concentrations in the range 0.5–3.7 ppm (band 425 nm), and a turn-on response towards a decrease of pH from 5.4 to 3.0 (band 375 nm), both resulting from the addition of acidic Fe
3+
salt solution to a MOF suspension. Thus, the ratiometric sensing properties and the originally proposed mechanism no longer apply; our work reveals a dynamic quenching mechanism for the fluorescence turn-off response due to the presence of Fe
3+
ions, and a ligand protonation mechanism for the turn-on response to a decrease in pH. Our work highlights the importance of a thorough investigation of the structure of any newly synthesized MOF, and, in the case of potential sensors, their selectivity and any environmental effects on their sensing behavior. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-15663-z |