Flood video segmentation on remotely sensed UAV using improved Efficient Neural Network

Semantic segmentation can be used to analyze the video data taken by UAV in the flood monitoring system. An accurate analysis can help rescue teams to assess and mitigate flood disasters. This paper proposed an improved Efficient Neural Network architecture to segment the UAV video of flood disaster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICT express 2022-09, Vol.8 (3), p.347-351
Hauptverfasser: Inthizami, Naili Suri, Ma’sum, M. Anwar, Alhamidi, Machmud R., Gamal, Ahmad, Ardhianto, Ronni, Kurnianingsih, Jatmiko, Wisnu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semantic segmentation can be used to analyze the video data taken by UAV in the flood monitoring system. An accurate analysis can help rescue teams to assess and mitigate flood disasters. This paper proposed an improved Efficient Neural Network architecture to segment the UAV video of flood disaster. The proposed method consists of atrous separable convolution as the encoder and depth-wise separable convolution as the decoder. The experimental results reveal that the proposed method outperforms Efficient Neural Networks’ other architecture and gives the highest frame per second.
ISSN:2405-9595
2405-9595
DOI:10.1016/j.icte.2022.01.016