Automatic Visual Sentiment Analysis with Convolution Neural network

Todaychr('39')s digital world demands about automated sentiment analysis on visual and text content to significantly displaying peoplechr('39')s feelings, opinions and emotions through text, images and videos across popular social networks. Earlier visual sentimental analysis fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of industrial engineering & production research 2020-09, Vol.31 (3), p.351-360
Hauptverfasser: N. Desai, S. Venkatramana, B.V.D.S. Sekhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Todaychr('39')s digital world demands about automated sentiment analysis on visual and text content to significantly displaying peoplechr('39')s feelings, opinions and emotions through text, images and videos across popular social networks. Earlier visual sentimental analysis faces many drawbacks like achieve low accuracy and more difficult to understand people opinions due to traditional techniques. Also, another major challenge is a huge number of images generated and uploaded every day across the world. This paper overcomes problems of visual sentiment analysis with the help of deep learning convolution neural network (CNN) and Affective Regions approach to achieve more meaningful sentiment reports with huge accuracy.
ISSN:2008-4889
2345-363X