Implementation of Linearly Pulse Shaped Generalised Frequency Division Multiplexing for Visible Light Communication Systems

In this article, a new modulation scheme named Direct Current biased Optical Generalised Frequency Division Multiplexing (DCO-GFDM) for Visible Light Communications (VLC) is explored. The DCO-GFDM enhances spectral efficiency by slicing both grids on the time-frequency plane and uses a circularly ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of the Communications Society 2020, Vol.1, p.1614-1622
Hauptverfasser: Kishore, Vejandla, Vakamulla, Venkata Mani, Popoola, Wasiu O., Kumar, Abhinav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a new modulation scheme named Direct Current biased Optical Generalised Frequency Division Multiplexing (DCO-GFDM) for Visible Light Communications (VLC) is explored. The DCO-GFDM enhances spectral efficiency by slicing both grids on the time-frequency plane and uses a circularly rotating filter for pulse shaping. In the Circular Pulse shaped DCO-GFDM (CP-DCO-GFDM), Root Raised Cosine (RRC) pulse is widely employed. This destroys the orthogonality among sub-carriers and degrades the Bit Error Rate (BER) performance. Therefore, in this work, a Linearly Pulse shaped DCO-GFDM (LP-DCO-GFDM) is proposed to retain the orthogonality among the sub-carriers and simultaneously improve BER and Peak-to-Average Power Ratio (PAPR) performance. The performance of CP/LP-DCO-GFDM is studied under double sided clipping distortion that occurs at the Light Emitting Diode (LED). Presented simulation results agree well with the theoretical results. Additionally, we present an experimental validation of the LP-DCO-GFDM on a Universal Software Radio Peripherals (USRP) based VLC test bed. The experimental results, in terms of Error Vector Magnitudes (EVM)s, the received constellations, and the received spectrum in comparison with DCO-OFDM shows improved performance.
ISSN:2644-125X
2644-125X
DOI:10.1109/OJCOMS.2020.3030118