An Averaging Principle for Stochastic Differential Delay Equations with Fractional Brownian Motion

An averaging principle for a class of stochastic differential delay equations (SDDEs) driven by fractional Brownian motion (fBm) with Hurst parameter in ( 1 / 2 , 1 ) is considered, where stochastic integration is convolved as the path integrals. The solutions to the original SDDEs can be approximat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2014-01, Vol.2014 (2014), p.214-223-722
Hauptverfasser: Xu, Yong, Li, Yongge, Pei, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An averaging principle for a class of stochastic differential delay equations (SDDEs) driven by fractional Brownian motion (fBm) with Hurst parameter in ( 1 / 2 , 1 ) is considered, where stochastic integration is convolved as the path integrals. The solutions to the original SDDEs can be approximated by solutions to the corresponding averaged SDDEs in the sense of both convergence in mean square and in probability, respectively. Two examples are carried out to illustrate the proposed averaging principle.
ISSN:1085-3375
1687-0409
DOI:10.1155/2014/479195