Measure-Theoretic Analysis of Stochastic Competence Sets and Dynamic Shapley Values in Banach Spaces

We develop a measure-theoretic framework for dynamic Shapley values in Banach spaces, extending classical cooperative game theory to continuous-time, infinite-dimensional settings. We prove the existence and uniqueness of strong solutions to stochastic differential equations modeling competence evol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-10, Vol.12 (19), p.3085
Hauptverfasser: Huang, Jih-Jeng, Chen, Chin-Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a measure-theoretic framework for dynamic Shapley values in Banach spaces, extending classical cooperative game theory to continuous-time, infinite-dimensional settings. We prove the existence and uniqueness of strong solutions to stochastic differential equations modeling competence evolution in Banach spaces, establishing sample path continuity and moment estimates. The dynamic Shapley value is rigorously defined as a càdlàg stochastic process with an axiomatic characterization. We derive a martingale representation for this process and establish its asymptotic properties, including a strong law of large numbers and a functional central limit theorem under α-mixing conditions. This framework provides a rigorous basis for analyzing dynamic value attribution in abstract spaces, with potential applications to economic and game-theoretic models.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12193085