PM10 and PM2.5 real-time prediction models using an interpolated convolutional neural network

In this paper, we propose a real-time prediction model that can respond to particulate matters (PM) in the air, which are an indication of poor air quality. The model applies interpolation to air quality and weather data and then uses a Convolutional Neural Network (CNN) to predict PM concentrations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-06, Vol.11 (1), p.11952-11952, Article 11952
Hauptverfasser: Chae, Sangwon, Shin, Joonhyeok, Kwon, Sungjun, Lee, Sangmok, Kang, Sungwon, Lee, Donghyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a real-time prediction model that can respond to particulate matters (PM) in the air, which are an indication of poor air quality. The model applies interpolation to air quality and weather data and then uses a Convolutional Neural Network (CNN) to predict PM concentrations. The interpolation transforms the irregular spatial data into an equally spaced grid, which the model requires. This combination creates the interpolated CNN (ICNN) model that we use to predict PM10 and PM2.5 concentrations. The PM10 and PM2.5 evaluation results show an effective prediction performance with an R-squared higher than 0.97 and a root mean square error (RMSE) of approximately 16% of the standard deviation. Furthermore, both PM10 and PM2.5 prediction models forecast high concentrations with high reliability, with a probability of detection higher than 0.90 and a critical success index exceeding 0.85. The proposed ICNN prediction model achieves a high prediction performance using spatio-temporal information and presents a new direction in the prediction field.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-91253-9