Noise insertion in CT for cocaine body packing: where is the limit of extensive dose reduction?
To evaluate the detection rate and image quality in CT-body-packer-screening at different radiation-dose levels and to determine a dose threshold that enables a reliable detection of incorporated body packs and incidental findings with a maximum of dose saving. We retrospectively included 27 individ...
Gespeichert in:
Veröffentlicht in: | European journal of medical research 2018-12, Vol.23 (1), p.59-59, Article 59 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To evaluate the detection rate and image quality in CT-body-packer-screening at different radiation-dose levels and to determine a dose threshold that enables a reliable detection of incorporated body packs and incidental findings with a maximum of dose saving.
We retrospectively included 27 individuals who underwent an abdominal CT with automated exposure control due to suspected body packing. CT images were reconstructed at different radiation-dose levels of 50%, 10, 5% and 1% using iterative reconstructions. All 135 CT reconstructions were evaluated by three independent readers. Reviewers determined the presence of foreign bodies and evaluated the image quality using a 5-point ranking scale. In addition, visualization of incidental findings was assessed.
A threshold of 5% (effective dose 0.11 ± 0.07 mSv) was necessary to correctly identify all 27 patients with suspected body packing. Extensive noise insertion to a dose level of 1% (0.02 ± 0.01 mSV) led to false-positive solid cocaine findings in three patients. Image quality was comparable between 100 and 50%. The threshold for correct identification of incidental findings was 10% of the initial dose (effective dose 0.21 ± 0.13 mSv).
Our results indicate that dose of abdominal CT for the detection of intracorporeal cocaine body packets can be markedly reduced to up to 5% of the initial dose while still providing sufficient image quality to detect ingested body packets. However, a minimum effective dose of 0.21 mSv (10% of initial dose) seems to be required to properly identify incidental findings. |
---|---|
ISSN: | 2047-783X 0949-2321 2047-783X |
DOI: | 10.1186/s40001-018-0356-3 |