Two-edge-resolved three-dimensional non-line-of-sight imaging with an ordinary camera

We introduce an approach for three-dimensional full-colour non-line-of-sight imaging with an ordinary camera that relies on a complementary combination of a new measurement acquisition strategy, scene representation model, and tailored reconstruction method. From an ordinary photograph of a matte li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-02, Vol.15 (1), p.1162-11, Article 1162
Hauptverfasser: Czajkowski, Robinson, Murray-Bruce, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce an approach for three-dimensional full-colour non-line-of-sight imaging with an ordinary camera that relies on a complementary combination of a new measurement acquisition strategy, scene representation model, and tailored reconstruction method. From an ordinary photograph of a matte line-of-sight surface illuminated by the hidden scene, our approach reconstructs a three-dimensional image of the scene hidden behind an occluding structure by exploiting two orthogonal edges of the structure for transverse resolution along azimuth and elevation angles and an information orthogonal scene representation for accurate range resolution. Prior demonstrations beyond two-dimensional reconstructions used expensive, specialized optical systems to gather information about the hidden scene. Here, we achieve accurate three-dimensional imaging using inexpensive, and ubiquitous hardware, without requiring a calibration image. Thus, our system may find use in indoor situations like reconnaissance and search-and-rescue. Ordinary cameras cannot directly see objects hidden around corners. Here, from an ordinary indirect 2D photograph, the authors compute a 3D image of a scene hidden behind a doorway by exploiting two perpendicular edges of the doorway.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-45397-7