Parallel Multi-Layer Monte Carlo Optimization Algorithm for Doubly Fed Induction Generator Controller Parameters Optimization

This work proposes a parallel multi-layer Monte Carlo optimization algorithm (PMMCOA) that optimizes proportional–integral parameters for a doubly fed induction generator-based wind turbine controller. The PMMCOA, an improved form of the Monte Carlo algorithm, realizes the optimization process via a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-10, Vol.16 (19), p.6982
Hauptverfasser: Tao, Xinghua, Mo, Nan, Qin, Jianbo, Yang, Xiaozhe, Yin, Linfei, Hu, Likun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work proposes a parallel multi-layer Monte Carlo optimization algorithm (PMMCOA) that optimizes proportional–integral parameters for a doubly fed induction generator-based wind turbine controller. The PMMCOA, an improved form of the Monte Carlo algorithm, realizes the optimization process via a parallel multi-layer structure. The PMMCOA includes rough search layers, precise search layers, and re-precise search layers. Each layer of the PMMCOA adopts a multi-region and multi-granularity approach to increase the diversity and randomness of the search samples. The PMMCOA is employed to tune the controller parameters for achieving maximum power point tracking and improving generation efficiency. The controller fitness function reflects the sum of the rotor angular velocity error and the reactive power error. Compared with the five metaheuristic algorithms, the PMMCOA has a higher global convergence and more accurate power tracking ability.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16196982