Figuring the characteristics of the Delta variant SARS-CoV-2 gene mutations in an Indonesian hospital: a descriptive study
Aim: Coronavirus disease 2019 (COVID-19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 has undergone several mutations, and ultimately, Indonesia was designated the Asian epicenter of the pandemic in 2021 due to the emergence of Del...
Gespeichert in:
Veröffentlicht in: | Exploration of medicine 2023-10, Vol.4 (5), p.839-846 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aim: Coronavirus disease 2019 (COVID-19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 has undergone several mutations, and ultimately, Indonesia was designated the Asian epicenter of the pandemic in 2021 due to the emergence of Delta variant SARS-CoV-2. Therefore, this study aimed to determine the characteristics of the Delta variant SARS-CoV-2 gene mutations.
Methods: This is a cross-sectional descriptive study to determine the mutation characteristics of the Delta variant SARS-CoV-2 with data collected from patients’ medical records and whole genome sequencing (WGS).
Results: The forty-nine patients who contracted the Delta variant SARS-CoV-2 were mainly aged 31−45 years and female. Four sublineages were identified, namely AY.23 (69.39%), AY.24 (22.45%), B.1.617.2 (6.12%), and AY.62 (2.04%), with fever and malaise being the most common clinical manifestations (79.60%). Furthermore, the spike (S) protein was most frequently mutated (12 mutations), with mutations in the Delta variant SARS-CoV-2 membrane (M) protein, nucleocapsid (N) protein, open reading frame (ORF), and nonstructural protein (NSP) also identified.
Conclusions: The most common Delta variant SARS-CoV-2 sublineage in the current study cohort was AY.23, with the S protein being most frequently mutated. Continuous genomic surveillance is required to contain future outbreaks or infection waves, especially during the COVID-19 pandemic. |
---|---|
ISSN: | 2692-3106 2692-3106 |
DOI: | 10.37349/emed.2023.00181 |