Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers

Nonlinear systems with two competing frequencies show locking or resonances. In lasers, the two interacting frequencies can be the cavity repetition rate and a frequency externally applied to the system. Conversely, the excitation of breather oscillations in lasers naturally triggers a second charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-10, Vol.13 (1), p.5784-10, Article 5784
Hauptverfasser: Wu, Xiuqi, Zhang, Ying, Peng, Junsong, Boscolo, Sonia, Finot, Christophe, Zeng, Heping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonlinear systems with two competing frequencies show locking or resonances. In lasers, the two interacting frequencies can be the cavity repetition rate and a frequency externally applied to the system. Conversely, the excitation of breather oscillations in lasers naturally triggers a second characteristic frequency in the system, therefore showing competition between the cavity repetition rate and the breathing frequency. Yet, the link between breathing solitons and frequency locking is missing. Here we demonstrate frequency locking at Farey fractions of a breather laser. The winding numbers exhibit the hierarchy of the Farey tree and the structure of a devil’s staircase. Numerical simulations of a discrete laser model confirm the experimental findings. The breather laser may therefore serve as a simple test bed to explore ubiquitous synchronization dynamics of nonlinear systems. The locked breathing frequencies feature a high signal-to-noise ratio and can give rise to dense radio-frequency combs, which are attractive for applications. Fractal optical solitons were studied in theory while it is cumbersome their experimental realization in optics setups. Here, the authors find that breathing solitons in lasers constitute fractals―the devil’s staircases, which are around 3000 times more stable than classical ones.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-33525-0