In Vitro Antimicrobial Activity of Green Synthesized Silver Nanoparticles Against Selected Gram-negative Foodborne Pathogens

Silver nanoparticles (AgNPs) used in this study were synthesized using pu-erh tea leaves extract with particle size of 4.06 nm. The antibacterial activity of green synthesized AgNPs against a diverse range of Gram-negative foodborne pathogens was determined using disk diffusion method, resazurin mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology 2018-07, Vol.9, p.1555-1555
Hauptverfasser: Loo, Yuet Ying, Rukayadi, Yaya, Nor-Khaizura, Mahmud-Ab-Rashid, Kuan, Chee Hao, Chieng, Buong Woei, Nishibuchi, Mitsuaki, Radu, Son
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silver nanoparticles (AgNPs) used in this study were synthesized using pu-erh tea leaves extract with particle size of 4.06 nm. The antibacterial activity of green synthesized AgNPs against a diverse range of Gram-negative foodborne pathogens was determined using disk diffusion method, resazurin microtitre-plate assay (minimum inhibitory concentration, MIC), and minimum bactericidal concentration test (MBC). The MIC and MBC of AgNPs against , , Typhimurium, and Enteritidis were 7.8, 3.9, 3.9, 3.9 and 7.8, 3.9, 7.8, 3.9 μg/mL, respectively. Time-kill curves were used to evaluate the concentration between MIC and bactericidal activity of AgNPs at concentrations ranging from 0×MIC to 8×MIC. The killing activity of AgNPs was fast acting against all the Gram-negative bacteria tested; the reduction in the number of CFU mL was >3 Log units (99.9%) in 1-2 h. This study indicates that AgNPs exhibit a strong antimicrobial activity and thus might be developed as a new type of antimicrobial agents for the treatment of bacterial infection including multidrug resistant bacterial infection.
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2018.01555