Carbon dots induce endoplasmic reticulum stress-mediated lipid dysregulation and embryonic developmental toxicity in zebrafish
Carbon dots (CDs) are widely utilized due to their exceptional physical and chemical properties. Nevertheless, there is a paucity of research examining the potential toxicity of carbon dots to human health, particularly with regard to developmental toxicity. The present study demonstrated that expos...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology and environmental safety 2024-12, Vol.288, p.117361, Article 117361 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbon dots (CDs) are widely utilized due to their exceptional physical and chemical properties. Nevertheless, there is a paucity of research examining the potential toxicity of carbon dots to human health, particularly with regard to developmental toxicity. The present study demonstrated that exposure to CDs resulted in increased mortality and malformations in zebrafish embryos. Further bioinformatics analyses indicated that CDs-induced lipid metabolism disorders may represent a significant pathway for developmental toxicity in zebrafish embryos. This can result in aberrant expression of genes involved in lipid metabolism, which ultimately leads to endoplasmic reticulum stress (ERS)-induced accumulation of excess lipids in the body. It can therefore be surmised that exposure to CDs in early life ultimately leads to developmental toxicity by inducing ERS-induced lipid metabolism disorders. The findings of this study suggest that there is a risk of long-term exposure to CDs from early life, and provide a theoretical basis and data support for the prevention of potential hazards of CDs.
[Display omitted]
•Carbon dots were mainly distributed in the yolk sac in zebrafish embryos.•Carbon dots induced developmental toxicity in zebrafish embryos.•Carbon dots induced lipid metabolism disorder in zebrafish embryos.•Carbon dots cause endoplasmic reticulum stress (ERS)-mediated lipid dysregulation. |
---|---|
ISSN: | 0147-6513 1090-2414 1090-2414 |
DOI: | 10.1016/j.ecoenv.2024.117361 |