Existence of positive solutions for a singular third-order two-point boundary value problem on the half-line

In this paper, we consider the following singular third-order two-point boundary value problem on the half-line of the form { x ‴ + ϕ ( t ) f ( t , x , x ′ , x ″ ) = 0 , 0 < t < + ∞ , x ( 0 ) = 0 , x ′ ( 0 ) = a 1 , x ′ ( + ∞ ) = b 1 , where ϕ ∈ C [ 0 , + ∞ ) , f ∈ C ( [ 0 , + ∞ ) × ( 0 , + ∞...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2022-07, Vol.2022 (1), p.1-11, Article 48
Hauptverfasser: Bao, Yongdong, Wang, Libo, Pei, Minghe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the following singular third-order two-point boundary value problem on the half-line of the form { x ‴ + ϕ ( t ) f ( t , x , x ′ , x ″ ) = 0 , 0 < t < + ∞ , x ( 0 ) = 0 , x ′ ( 0 ) = a 1 , x ′ ( + ∞ ) = b 1 , where ϕ ∈ C [ 0 , + ∞ ) , f ∈ C ( [ 0 , + ∞ ) × ( 0 , + ∞ ) × R 2 , R ) may be singular at x = 0 , and a 1 , b 1 are positive constants. Using the Leray–Schauder nonlinear alternative and the diagonalization method together with the truncation function technique, we obtain the existence and qualitative properties of positive solutions for the problem. As applications, an example is given to illustrate our result.
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-022-01630-0