Existence of positive solutions for a singular third-order two-point boundary value problem on the half-line
In this paper, we consider the following singular third-order two-point boundary value problem on the half-line of the form { x ‴ + ϕ ( t ) f ( t , x , x ′ , x ″ ) = 0 , 0 < t < + ∞ , x ( 0 ) = 0 , x ′ ( 0 ) = a 1 , x ′ ( + ∞ ) = b 1 , where ϕ ∈ C [ 0 , + ∞ ) , f ∈ C ( [ 0 , + ∞ ) × ( 0 , + ∞...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2022-07, Vol.2022 (1), p.1-11, Article 48 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the following singular third-order two-point boundary value problem on the half-line of the form
{
x
‴
+
ϕ
(
t
)
f
(
t
,
x
,
x
′
,
x
″
)
=
0
,
0
<
t
<
+
∞
,
x
(
0
)
=
0
,
x
′
(
0
)
=
a
1
,
x
′
(
+
∞
)
=
b
1
,
where
ϕ
∈
C
[
0
,
+
∞
)
,
f
∈
C
(
[
0
,
+
∞
)
×
(
0
,
+
∞
)
×
R
2
,
R
)
may be singular at
x
=
0
, and
a
1
,
b
1
are positive constants. Using the Leray–Schauder nonlinear alternative and the diagonalization method together with the truncation function technique, we obtain the existence and qualitative properties of positive solutions for the problem. As applications, an example is given to illustrate our result. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-022-01630-0 |