BMP signaling is required for postnatal murine hematopoietic stem cell self-renewal
Life-long production of blood from hematopoietic stem cells (HSCs) is a process of strict modulation. Intrinsic and extrinsic signals govern fate options like self-renewal - a cardinal feature of HSCs. Bone morphogenetic proteins (BMP) have an established role in embryonic hematopoiesis, but less is...
Gespeichert in:
Veröffentlicht in: | Haematologica (Roma) 2021-08, Vol.106 (8), p.2203-2214 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Life-long production of blood from hematopoietic stem cells (HSCs) is a process of strict modulation. Intrinsic and extrinsic signals govern fate options like self-renewal - a cardinal feature of HSCs. Bone morphogenetic proteins (BMP) have an established role in embryonic hematopoiesis, but less is known about its functions in adulthood. Previously, SMAD-mediated BMP signaling has been proven dispensable for HSCs. However, the BMP Type II receptor (BMPR-II) is highly expressed in HSCs, leaving the possibility that BMPs function via alternative pathways. Here, we establish that BMP signaling is required for self-renewal of adult HSCs. Through conditional knockout we show that BMPR-II deficient HSCs have impaired self-renewal and regenerative capacity. BMPR-II deficient cells have reduced p38 activation, implying that non-SMAD pathways operate downstream of BMPs in HSCs. Indeed, a majority of primitive hematopoietic cells do not engage in SMAD-mediated responses downstream of BMPs in vivo. Furthermore, deficiency of BMPR-II results in increased expression of TJP1, a known regulator of self-renewal in other stem cells, and knockdown of TJP1 in primitive hematopoietic cells partly rescues the BMPR-II null phenotype. This suggests TJP1 may be a universal stem cell regulator. In conclusion, BMP signaling, in part mediated through TJP1, is required endogenously by adult HSCs to maintain self-renewal capacity and proper resilience of the hematopoietic system during regeneration. |
---|---|
ISSN: | 0390-6078 1592-8721 |
DOI: | 10.3324/haematol.2019.236125 |