Binomial Representation of Cryptographic Binary Sequences and Its Relation to Cellular Automata

The binomial sequences are binary sequences that correspond to the diagonals of the binary Sierpinski’s triangle. They have fancy properties such that all the sequences with period equal to a power of 2 can be represented as the sum of a finite set of binomial sequences. Other structural properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2019-01, Vol.2019 (2019), p.1-13
Hauptverfasser: Cardell, Sara D., Fúster-Sabater, Amparo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The binomial sequences are binary sequences that correspond to the diagonals of the binary Sierpinski’s triangle. They have fancy properties such that all the sequences with period equal to a power of 2 can be represented as the sum of a finite set of binomial sequences. Other structural properties of these sequences (period, linear complexity, construction rules, or relations among the different binomial sequences) have been analyzed in detail. Furthermore, this work enhances the close relation between the binomial sequences and a kind of Boolean networks, known as linear cellular automata. In this sense, the binomial sequences exhibit the same behavior as that of particular Boolean networks. Consequently, the binomial sequences can be considered as primary tools for generating other more complex Boolean networks with applications in communication systems and cryptography.
ISSN:1076-2787
1099-0526
DOI:10.1155/2019/2108014