Effect of Audiovisual Cross-Modal Conflict during Working Memory Tasks: A Near-Infrared Spectroscopy Study

Cognitive conflict effects are well characterized within unimodality. However, little is known about cross-modal conflicts and their neural bases. This study characterizes the two types of visual and auditory cross-modal conflicts through working memory tasks and brain activities. The participants c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain sciences 2022-03, Vol.12 (3), p.349
Hauptverfasser: Cui, Jiahong, Sawamura, Daisuke, Sakuraba, Satoshi, Saito, Ryuji, Tanabe, Yoshinobu, Miura, Hiroshi, Sugi, Masaaki, Yoshida, Kazuki, Watanabe, Akihiro, Tokikuni, Yukina, Yoshida, Susumu, Sakai, Shinya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cognitive conflict effects are well characterized within unimodality. However, little is known about cross-modal conflicts and their neural bases. This study characterizes the two types of visual and auditory cross-modal conflicts through working memory tasks and brain activities. The participants consisted of 31 healthy, right-handed, young male adults. The Paced Auditory Serial Addition Test (PASAT) and the Paced Visual Serial Addition Test (PVSAT) were performed under distractor and no distractor conditions. Distractor conditions comprised two conditions in which either the PASAT or PVSAT was the target task, and the other was used as a distractor stimulus. Additionally, oxygenated hemoglobin (Oxy-Hb) concentration changes in the frontoparietal regions were measured during tasks. The results showed significantly lower PASAT performance under distractor conditions than under no distractor conditions, but not in the PVSAT. Oxy-Hb changes in the bilateral ventrolateral prefrontal cortex (VLPFC) and inferior parietal cortex (IPC) significantly increased in the PASAT with distractor compared with no distractor conditions, but not in the PVSAT. Furthermore, there were significant positive correlations between Δtask performance accuracy and ΔOxy-Hb in the bilateral IPC only in the PASAT. Visual cross-modal conflict significantly impairs auditory task performance, and bilateral VLPFC and IPC are key regions in inhibiting visual cross-modal distractors.
ISSN:2076-3425
2076-3425
DOI:10.3390/brainsci12030349