Exploring right ovary degeneration in duck and goose embryos by histology and transcriptome dynamics analysis

The development of asymmetric chick gonads involves separate developmental programs in the left and right gonads. In contrast to the left ovary developing into a fully functional reproductive organ, the right ovary undergoes gradual degeneration. However, the molecular mechanisms underlying the the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2023-07, Vol.24 (1), p.389-389, Article 389
Hauptverfasser: Ran, Mingxia, Ouyang, Qingyuan, Li, Xuejian, Hu, Shenqiang, Hu, Bo, Hu, Jiwei, Dong, Dan, Li, Liang, He, Hua, Liu, Hehe, Wang, Jiwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of asymmetric chick gonads involves separate developmental programs in the left and right gonads. In contrast to the left ovary developing into a fully functional reproductive organ, the right ovary undergoes gradual degeneration. However, the molecular mechanisms underlying the the degeneration of the right ovary remain incompletely understood. In the present study, we investigated the histomorphological and transcriptomic changes in the right ovary of ducks and geese during the the embryonic stage up to post-hatching day 1. Hematoxylin-eosin stainings revealed that the right ovary developed until embryonic day 20 in ducks (DE20) or embryonic day 22 in geese (GE22), after which it started to regress. Further RNA-seq analyses revealed that both the differentially expressed genes (DEGs) in ducks and geese right ovary developmental stage were significantly enriched in cell adhesion-related pathway (ECM-receptor interaction, Focal adhesion pathway) and Cellular senescence pathway. Then during the degeneration stage, the DEGs were primarily enriched in pathways associated with inflammation, including Herpes simplex virus 1 infection, Influenza A, and Toll-like receptor signaling pathway. Moreover, duck-specific DEGs showed enrichment in Steroid hormone biosynthesis, Base excision repair, and the Wnt signaling pathway, while geese-specifically DEGs were found to be enriched in apoptosis and inflammation-related pathways, such as Ferroptosis, Necroptosis, RIG-I-like receptor signaling pathway, and NOD-like receptor signaling pathway. These findings suggest that the degeneration process of the right ovary in ducks occurs at a slower pace compared to that in geese. Additionally, the observation of the left ovary of the geese varying degeneration rates in the right ovary after hatching indicated that the development of the left ovary may be influenced by the degeneration of the right ovary. The data presented in this study provide valuable insights into the dynamic changes in histological structure and transcriptome during the degeneration of the right ovary in ducks and geese. In addition, through the analysis of shared characteristics in the degeneration process of the right ovary in both ducks and geese, we have uncovered the patterns of degradation and elucidated the molecular mechanisms involved in the regression of the right ovary in poultry. Furthermore, we have also made initial discoveries regarding the relationship between the degeneration
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-023-09493-0