Synthesis and Structure of Unsymmetrical Anthracenyl-Isoxazole Antitumor Agents Via the Diastereoselective Bromination of 3-(9′-Anthryl)-Isoxazole Esters

In pursuit of unsymmetrical precursors for the novel series of anthracenyl-isoxazole amide (AIM) antitumor agents, a series of substituted anthracenes were subjected to bromination and re-aromatization in our study, during which we solved four single crystal X-ray diffractometry (Sc-xrd) structures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2024-03, Vol.14 (3), p.256
Hauptverfasser: Campbell, Michael J, Decato, Daniel A, Li, Chun, Weaver, Matthew J, Natale, Nicholas R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In pursuit of unsymmetrical precursors for the novel series of anthracenyl-isoxazole amide (AIM) antitumor agents, a series of substituted anthracenes were subjected to bromination and re-aromatization in our study, during which we solved four single crystal X-ray diffractometry (Sc-xrd) structures which we report herein. The C-9 nitrile oxide, after its reaction with bromine, was isolated, but when subjected to re-aromatization, it returned to the starting 10-bromo nitrile oxide 1, which did provide an accurate crystal structure, with R = 0.018. The 10-halogenated 3-(9’-anthryl)-isoxazole esters were subjected to bromination and re-aromatization. Surprisingly, the yields obtained in the presence of the isoxazole were reasonably good (62–68% isolated yields), and the major diastereomers allowed for the characterization using Sc-xrd. The penta bromo product 2 showed a trans, trans, cis relationship for the four bromines on the A-ring of the anthracene, and we observed that for the unit cell, the atropisomers displayed a 1:1 ratio at the chiral axis between the isoxazole and anthrancene rings. Similarly, the 10-chloro 3 indicated a ratio of 1:1 at the chiral axis in the crystal structure. A base-induced re-aromatization afforded 3,10-dihalogenated analogues selectively in very good yields (X = Cl, 89%; X = Br 92%), of which the dibromo 4 was characterized using Sc-xrd. The improved yields of the unique diastereomeric bromination products suggested the consideration of a novel electrophilic aromatic substitution mechanism driven by the stereo-electronic environment, imposed by the isoxazole ester substituent. The promise of the application of this chemistry in the future development of AIM antitumor agents is suggested.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst14030256