On the critical Choquard-Kirchhoff problem on the Heisenberg group
In this paper, we deal with the following critical Choquard-Kirchhoff problem on the Heisenberg group of the form: where is the Kirchhoff function, is the Kohn Laplacian on the Heisenberg group , is a Carathéodory function, is a parameter and is the critical exponent in the sense of Hardy-Littlewood...
Gespeichert in:
Veröffentlicht in: | Advances in nonlinear analysis 2023-01, Vol.12 (1), p.210-236 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we deal with the following critical Choquard-Kirchhoff problem on the Heisenberg group of the form:
where
is the Kirchhoff function,
is the Kohn Laplacian on the Heisenberg group
,
is a Carathéodory function,
is a parameter and
is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality. We first establish a new version of the concentration-compactness principle for the Choquard equation on the Heisenberg group. Then, combining with the mountain pass theorem, we obtain the existence of nontrivial solutions to the aforementioned problem in the case of nondegenerate and degenerate cases. |
---|---|
ISSN: | 2191-950X 2191-950X |
DOI: | 10.1515/anona-2022-0270 |