Decodificación de Movimientos Individuales de los Dedos y Agarre a Partir de Señales Mioeléctricas de Baja Densidad

Uno de los principales retos en el diseño de prótesis de mano es poder establecer un control intuitivo que reduzca el esfuerzo del usuario durante su entrenamiento. Este trabajo presenta un esquema para identificar tareas de motricidad fina de la mano, agrupadas en movimientos de los dedos individua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista iberoamericana de automática e informática industrial 2017-04, Vol.14 (2), p.184-192
Hauptverfasser: Villarejo Mayor, John J., Costa, Regina Mamede, Frizera-Neto, Anselmo, Bastos, Teodiano Freire
Format: Artikel
Sprache:spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uno de los principales retos en el diseño de prótesis de mano es poder establecer un control intuitivo que reduzca el esfuerzo del usuario durante su entrenamiento. Este trabajo presenta un esquema para identificar tareas de motricidad fina de la mano, agrupadas en movimientos de los dedos individuales y gestos para el agarre de objetos el cual se ha validado con sujetos amputados. Se han comparado diferentes métodos de selección de características y clasificadores para el reconocimiento de patrones mioeléctricos, utilizando cuatro electrodos superficiales. Las características de las señales en el dominio del tiempo y la frecuencia se han combinado con métodos no lineales basados en análisis de fractales, mostrando una diferencia significativa en comparación con los métodos expuestos en la literatura para clasificar tareas de fuerza. Los resultados con amputados mostraron una exactitud de hasta 99,4% en los movimientos individuales de los dedos, superior a la obtenida con los gestos de agarre, de hasta 93,3%. El sistema ha obtenido una tasa de acierto promedio de 86,3% utilizando máquinas de soporte vectorial (SVM), seguido muy de cerca por K-vecinos más cercanos (KNN) con 83,4%. Sin embargo, KNN ha obtenido un mejor rendimiento global, debido a que es más rápido que SVM, lo que representa una ventaja para aplicaciones en tiempo real. El método aquí propuesto ofrece una mayor funcionalidad en el control de prótesis de mano, lo que mejoraría su aceptación por parte de los amputados. Intuitive prosthesis control is one of the most important challenges in order to reduce the user effort in learning to use an artificial hand. This work presents the development of a myoelectric pattern recognition system for myoelectric weak signals able to discriminate dexterous hand movements using a reduced number of electrodes. The system was evaluated in six forearm amputees and the results were compared with the performance of able-bodied subjects. Different methods were analyzed to classify individual fingers flexion, hand gestures and different grasps using four electrodes and considering the low level of muscle contraction in these tasks. Multiple features of sEMG signals were also analyzed considering traditional magnitude-based features and fractal analysis. Statistical significance was computed for all the methods using different set of features, for both groups of subjects (able-bodied and amputees). For amputees, results showed accuracy up to 99.4% for individual
ISSN:1697-7912
1697-7920
DOI:10.1016/j.riai.2017.02.001