A note on approximation of continuous functions on normed spaces

Let $X$ be a real separable normed space $X$ admitting a separating polynomial. We prove that each continuous function from a subset $A$ of $X$ to a real Banach space can be uniformly approximated by restrictions to $A$ of functions, which are analytic on open subsets of $X$. Also we prove that each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Karpats'kì matematinì publìkacìï 2020-01, Vol.12 (1), p.107-110
Hauptverfasser: Mytrofanov, M.A., Ravsky, A.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $X$ be a real separable normed space $X$ admitting a separating polynomial. We prove that each continuous function from a subset $A$ of $X$ to a real Banach space can be uniformly approximated by restrictions to $A$ of functions, which are analytic on open subsets of $X$. Also we prove that each continuous function to a complex Banach space from a complex separable normed space, admitting a separating $*$-polynomial, can be uniformly approximated by $*$-analytic functions.
ISSN:2075-9827
2313-0210
DOI:10.15330/cmp.12.1.107-110