Calibration by Air in Polarization Sensing
Scattered light polarization serves as an indicator and a characteristic of various processes in the atmosphere. The polarization measurements of all scattering matrix elements provide an adequate description of the optical and morphological parameters and orientation of particles in clouds. In this...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2022-08, Vol.13 (8), p.1225 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Scattered light polarization serves as an indicator and a characteristic of various processes in the atmosphere. The polarization measurements of all scattering matrix elements provide an adequate description of the optical and morphological parameters and orientation of particles in clouds. In this article, we consider the problem of the calibration of matrix polarization lidar (MPL) parameters. Calibration by air is an effective alternative to the technique for correcting optical element parameters and among the calibration parameters of the MPL optical path are the relative transmission coefficient of a two-channel receiver, the angular positions of the transmission axes of the optical elements of the transmitter and receiver units, including the polarizers and wave plates, and the retardance of wave plates. For the first time, the method of calibration by air was partially implemented in the MPL to study Asian dust in the atmosphere. We considered the calibration problem more generally and this was due to the need to calibrate different MPL modifications from stationary to mobile ones. The calibration equations have been derived in terms of instrumental vectors, and the method of their solution by the generalized least squares method has been proposed. The method has been verified on a numerical MPL model and validated using MPL measurements in Daejeon, Republic of Korea. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos13081225 |