Mining novel biomarkers for prognosis of gastric cancer with serum proteomics
Although gastric cancer (GC) remains the second cause of cancer-related death, useful biomarkers for prognosis are still unavailable. We present here the attempt of mining novel biomarkers for GC prognosis by using serum proteomics. Sera from 43 GC patients and 41 controls with gastritis as Group 1...
Gespeichert in:
Veröffentlicht in: | Journal of experimental & clinical cancer research 2009-09, Vol.28 (1), p.126-126, Article 126 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although gastric cancer (GC) remains the second cause of cancer-related death, useful biomarkers for prognosis are still unavailable. We present here the attempt of mining novel biomarkers for GC prognosis by using serum proteomics.
Sera from 43 GC patients and 41 controls with gastritis as Group 1 and 11 GC patients as Group 2 was successively detected by Surface Enhanced Laser Desorption/ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS) with Q10 chip. Peaks were acquired by Ciphergen ProteinChip Software 3.2.0 and analyzed by Zhejiang University-ProteinChip Data Analysis System (ZJU-PDAS). CEA level were evaluated by chemiluminescence immunoassay.
After median follow-up periods of 33 months, Group 1 with 4 GC patients lost was divided into 20 good-prognosis GC patients (overall survival more than 24 months) and 19 poor-prognosis GC patients (no more than 24 months). The established prognosis pattern consisted of 5 novel prognosis biomarkers with 84.2% sensitivity and 85.0% specificity, which were significantly higher than those of carcinoembryonic antigen (CEA) and TNM stage. We also tested prognosis pattern blindly in Group 2 with 66.7% sensitivity and 80.0% specificity. Moreover, we found that 4474-Da peak elevated significantly in GC and was associated with advanced stage (III+IV) and short survival (p < 0.03).
We have identified a number of novel biomarkers for prognosis prediction of GC by using SELDI-TOF-MS combined with sophisticated bioinformatics. Particularly, elevated expression of 4474-Da peak showed very promising to be developed into a novel biomarker associated with biologically aggressive features of GC. |
---|---|
ISSN: | 1756-9966 0392-9078 1756-9966 |
DOI: | 10.1186/1756-9966-28-126 |