Fuzzy Method Design for IoT-Based Mushroom Greenhouse Controlling

The ideal conditions for the oyster mushrooms growth are at a humidity of 65-75% and 29-31C during incubation, while the growth of stems should be at a humidity of 70-90% 29-32C. This ideal ecosystem is maintained by aeration and manual watering. Still, the results are not optimal in preventing dama...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intensif (Online) 2022-02, Vol.6 (1), p.81-91
Hauptverfasser: Prasetyo, Angga, Setyawan, Moh. Bhanu, Litanianda, Yovi, Sugianti, Sugianti, Masykur, Fauzan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ideal conditions for the oyster mushrooms growth are at a humidity of 65-75% and 29-31C during incubation, while the growth of stems should be at a humidity of 70-90% 29-32C. This ideal ecosystem is maintained by aeration and manual watering. Still, the results are not optimal in preventing damage to the mycelium during the incubation period, resulting in a decrease in crop yields. Automatic control has not created ideal conditions because air temperature and humidity regulation are only based on fans and sprayers that do not directly affect air conditions. Therefore, we need a method to manipulate the mushroom greenhouse space ecosystem, namely fuzzy logic, the application of fuzzy logic integrated with sensors, actuators, and microcontrollers with the Internet of Things to solve this problem. The results of the installation of fuzzy logic in the mushroom's greenhouse in this system can be seen from the fan's modulation response and the pump's duration. The test results of this control feature can manipulate temperature and humidity. Therefore, the oyster mushroom greenhouse produces an ideal state of 29.8C, the humidity of 68.97% RH, and the production has been proven to be optimal with an average daily harvest of 3.8kg.
ISSN:2580-409X
2549-6824
DOI:10.29407/intensif.v6i1.16786