2D resistivity model around the rupture area of the 2011 Tohoku-oki earthquake (Mw 9.0)

The 2011 Tohoku-oki earthquake ( M w 9.0) was characterized by a huge fault slip on the shallowest part of the plate interface, where fault behavior had been believed to be aseismic. In this study, we modeled the two-dimensional resistivity distribution across the slip area based on ocean-bottom ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth, planets, and space planets, and space, 2023-12, Vol.75 (1), p.82-15, Article 82
Hauptverfasser: Ichihara, Hiroshi, Kasaya, Takafumi, Baba, Kiyoshi, Goto, Tada-nori, Yamano, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 2011 Tohoku-oki earthquake ( M w 9.0) was characterized by a huge fault slip on the shallowest part of the plate interface, where fault behavior had been believed to be aseismic. In this study, we modeled the two-dimensional resistivity distribution across the slip area based on ocean-bottom electromagnetic measurements to understand the physical properties around the plate interface controlling fault rupture processes. The optimal 2D resistivity model showed a conductive area around the shallowest plate interface where the huge coseismic slip was observed, whereas the deeper plate interface where the fault rupture was nucleated was relatively more resistive. The shallowest plate interface was interpreted to have a high pore seawater fraction, whereas the deeper interface was interpreted as a dry area. These findings are consistent with the hypothesis that aseismic frictional conditions changed to conditions enhancing fault rupture when the rupture propagated to the wet, clay-rich shallowest plate area. The optimal resistivity model also revealed a conductive area under the outer-rise area of the Pacific Plate. This finding supports the existence of a hydrated oceanic crust that supplied aqueous water to the subduction zone, including to the huge fault slip area. Graphical Abstract
ISSN:1880-5981
1343-8832
1880-5981
DOI:10.1186/s40623-023-01828-1