A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms

Photosynthesis is a key process linking carbon and water cycles, and satellite-retrieved solar-induced chlorophyll fluorescence (SIF) can be a valuable proxy for photosynthesis. The TROPOspheric Monitoring Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2022-07, Vol.9 (1), p.427-11, Article 427
Hauptverfasser: Chen, Xingan, Huang, Yuefei, Nie, Chong, Zhang, Shuo, Wang, Guangqian, Chen, Shiliu, Chen, Zhichao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photosynthesis is a key process linking carbon and water cycles, and satellite-retrieved solar-induced chlorophyll fluorescence (SIF) can be a valuable proxy for photosynthesis. The TROPOspheric Monitoring Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the short temporal coverage of the data records has limited its applications in long-term studies. This study uses machine learning to reconstruct TROPOMI SIF (RTSIF) over the 2001–2020 period in clear-sky conditions with high spatio-temporal resolutions (0.05° 8-day). Our machine learning model achieves high accuracies on the training and testing datasets (R 2  = 0.907, regression slope = 1.001). The RTSIF dataset is validated against TROPOMI SIF and tower-based SIF, and compared with other satellite-derived SIF (GOME-2 SIF and OCO-2 SIF). Comparing RTSIF with Gross Primary Production (GPP) illustrates the potential of RTSIF for estimating gross carbon fluxes. We anticipate that this new dataset will be valuable in assessing long-term terrestrial photosynthesis and constraining the global carbon budget and associated water fluxes. Measurement(s) Solar-Induced Fluorescence Technology Type(s) machine learning algorithms
ISSN:2052-4463
2052-4463
DOI:10.1038/s41597-022-01520-1