Finite Element Analysis of an Implant-Supported FDP with Different Connector Heights

All-ceramic fixed dental prostheses (FDPs) tend to fracture in the connector areas, due to the concentration of tensile stresses. This study aimed to evaluate the role of connector height on the stress distribution of a posterior three-unit implant-supported all-ceramic FDP using finite element anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2022-11, Vol.14 (11), p.2334
Hauptverfasser: Alberto, Laura H. J., Kalluri, Lohitha, Esquivel-Upshaw, Josephine F., Duan, Yuanyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All-ceramic fixed dental prostheses (FDPs) tend to fracture in the connector areas, due to the concentration of tensile stresses. This study aimed to evaluate the role of connector height on the stress distribution of a posterior three-unit implant-supported all-ceramic FDP using finite element analysis (FEA). Two titanium dental implants, their abutments, screws, and a three-unit all-ceramic FDP were scanned using a micro-CT scanner. Three 3D models with altered distal connector heights (3, 4, and 5 mm) were generated and analyzed on ABAQUS FEA software. The maximum principal stress values in MPa observed for each model with different connector heights and their respective locations (MA = mesial abutment; DA = distal abutment; F = framework; V = veneer) were: 3 mm—219 (MA), 88 (DA), 11 (F), 16 (V); 4 mm—194 (MA), 82 (DA), 8 (F), 18 (V); 5 mm—194 (MA), 80 (DA), 8 (F), and 18 (V). All the assembled models demonstrated the peak stresses at the neck area on the mesial abutments. The connector height had a significant influence on the stress distribution of the prosthesis. The models with higher distal connectors (4 and 5 mm) had a lower and more uniform distribution of maximum principal stresses (except for the veneer layer) when compared with the model with the smallest distal connector.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym14112334