The Groups of Isometries of Metric Spaces over Vector Groups
In this paper, we consider the groups of isometries of metric spaces arising from finitely generated additive abelian groups. Let A be a finitely generated additive abelian group. Let R={1,ϱ} where ϱ is a reflection at the origin and T={ta:A→A,ta(x)=x+a,a∈A}. We show that (1) for any finitely genera...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2022-12, Vol.10 (23), p.4453 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the groups of isometries of metric spaces arising from finitely generated additive abelian groups. Let A be a finitely generated additive abelian group. Let R={1,ϱ} where ϱ is a reflection at the origin and T={ta:A→A,ta(x)=x+a,a∈A}. We show that (1) for any finitely generated additive abelian group A and finite generating set S with 0∉S and −S=S, the maximum subgroup of IsomX(A,S) is RT; (2) D⊴RT if and only if D≤T or D=RT′ where T′={h2:h∈T}; (3) for the vector groups over integers with finite generating set S={u∈Zn:|u|=1}, IsomX(Zn,S)=On(Z)Zn. The paper also includes a few intermediate technical results. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10234453 |