Pancyclicity of the n-Generalized Prism over Skirted Graphs

A side skirt is a planar rooted tree T, T≠P2, where the root of T is a vertex of degree at least two, and all other vertices except the leaves are of degree at least three. A reduced Halin graph or a skirted graph is a plane graph G=T∪P, where T is a side skirt, and P is a path connecting the leaves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2022-04, Vol.14 (4), p.816
Hauptverfasser: Muaengwaeng, Artchariya, Boonklurb, Ratinan, Singhun, Sirirat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A side skirt is a planar rooted tree T, T≠P2, where the root of T is a vertex of degree at least two, and all other vertices except the leaves are of degree at least three. A reduced Halin graph or a skirted graph is a plane graph G=T∪P, where T is a side skirt, and P is a path connecting the leaves of T in the order determined by the embedding of T. The structure of reduced Halin or skirted graphs contains both symmetry and asymmetry. For n≥2 and Pn=v1v2v3⋯vn as a path of length n−1, we call the Cartesian product of a graph G and a path Pn, the n-generalized prism over a graph G. We have known that the n-generalized prism over a skirted graph is Hamiltonian. To support the Bondy’s metaconjecture from 1971, we show that the n-generalized prism over a skirted graph is pancyclic.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym14040816