Distribution of Harmful Algal Growth-Limiting Bacteria on Artificially Introduced Ulva and Natural Macroalgal Beds
The intensity and frequency of harmful algal blooms (HABs) have increased, posing a threat to human seafood resources due to massive kills of cultured fish and toxin contamination of bivalves. In recent years, bacteria that inhibit the growth of HAB species were found to be densely populated on the...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-08, Vol.10 (16), p.5658 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The intensity and frequency of harmful algal blooms (HABs) have increased, posing a threat to human seafood resources due to massive kills of cultured fish and toxin contamination of bivalves. In recent years, bacteria that inhibit the growth of HAB species were found to be densely populated on the biofilms of some macroalgal species, indicating the possible biological control of HABs by the artificial introduction of macroalgal beds. In this study, an artificially created Ulva pertusa bed using mobile floating cages and a natural macroalgal bed were studied to elucidate the distribution of algal growth-limiting bacteria (GLB). The density of GLB affecting fish-killing raphidophyte Chattonella antiqua, and two harmful dinoflagellates, were detected between 106 and 107 CFU g−1 wet weight on the biofilm of artificially introduced U. pertusa and 10 to 102 CFU mL−1 from adjacent seawater; however, GLB found from natural macroalgal species targeted all tested HAB species (five species), ranging between 105 and 106 CFU g−1 wet weight in density. These findings provide new ecological insights of GLB at macroalgal beds, and concurrently demonstrate the possible biological control of HABs by artificially introduced Ulva beds. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10165658 |