The Combination of Cigarette Smoking and Alcohol Consumption Synergistically Increases Reactive Carbonyl Species in Human Male Plasma
Cigarette smoking and alcohol consumption are major risk factors for lifestyle-related diseases. Although it has been reported that the combination of these habits worsens risks, the underlying mechanism remains elusive. Reactive carbonyl species (RCS) cause chemical modifications of biological mole...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2021-08, Vol.22 (16), p.9043 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cigarette smoking and alcohol consumption are major risk factors for lifestyle-related diseases. Although it has been reported that the combination of these habits worsens risks, the underlying mechanism remains elusive. Reactive carbonyl species (RCS) cause chemical modifications of biological molecules, leading to alterations in cellular signaling pathways, and total RCS levels have been used as a lipid peroxidation marker linked to lifestyle-related diseases. In this study, at least 41 types of RCS were identified in the lipophilic fraction of plasma samples from 40 subjects using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). Higher levels of 10 alkanals, 5 trans-2-alkenals, 1 cis-4-alkenal, and 3 alkadienals were detected in the smoking/drinking group (N = 10) as compared to those with either habit (N = 10 each) or without both habits (N = 10) in the analysis of covariances adjusted for age and BMI. The levels of 3 alkanals, 1 trans-2-alkenal, 1 alkadienal, and 1 4-hydroxy-2-alkenal in the smoking/drinking group were significantly higher than those in the no-smoking/drinking and no-smoking/no-drinking groups. These results strongly indicate that the combination of cigarette smoking and alcohol drinking synergistically increases the level and variety of RCS in the circulating blood, and may further jeopardize cellular function. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms22169043 |