Optimization of the Synthesis Parameters and Application of Cellulose Nanocrystals as Binders in Capacitors
Cellulose nanocrystals (CNCs) are a very versatile material, and optimizing the reaction conditions to obtain them is vital for cost savings, purity, selectivity, or performance. In this study, the reaction conditions of the CNCs were tested, as well as their application as binders for the fabricati...
Gespeichert in:
Veröffentlicht in: | International Journal of Polymer Science 2023-07, Vol.2023, p.1-16 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cellulose nanocrystals (CNCs) are a very versatile material, and optimizing the reaction conditions to obtain them is vital for cost savings, purity, selectivity, or performance. In this study, the reaction conditions of the CNCs were tested, as well as their application as binders for the fabrication of electrodes of a symmetric capacitor (based on activated carbon). The resulting CNCs were physicochemically characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, atomic force microscopy, and its capacitive properties using cyclic voltammetry (CV). It was found that the best reaction conditions were at 45°C, 30 and 45 minutes, and 64 wt%. The CNCs were used as a binder, as they conferred stability to the electrodes and prevented the crumbling of the activated carbon electrodes. The CV measurements showed a capacitor behavior; CNCs can be used in energy storage applications. |
---|---|
ISSN: | 1687-9422 1687-9430 |
DOI: | 10.1155/2023/2842385 |