Genipin versus Ferric Chloride cross-linked unmodified Gum Arabic/Chitosan/nano-Hydroxyapatite nanocomposite hydrogels as potential scaffolds for bone regeneration

Ferric chloride (FeCl 3 ) and Genipin were utilized as cross-linkers to create two types of nanocomposite hydrogels through physical and covalent cross-linking methods, respectively. The hydrogels were composed of unmodified Gum Arabic (GA), Chitosan (Ch), and natural nano-Hydroxyapatite (nHA) using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-09, Vol.13 (1), p.14402-14402, Article 14402
Hauptverfasser: Makar, Lara E., Nady, Norhan, Shawky, Neivin, Kandil, Sherif H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferric chloride (FeCl 3 ) and Genipin were utilized as cross-linkers to create two types of nanocomposite hydrogels through physical and covalent cross-linking methods, respectively. The hydrogels were composed of unmodified Gum Arabic (GA), Chitosan (Ch), and natural nano-Hydroxyapatite (nHA) using an acrylic acid solvent. Both the natural nHA and the FeCl 3 vs. genipin cross-linked GA/Ch/nHA nano-composite hydrogels were prepared and characterized using various in vitro and in vivo analysis techniques. The use of FeCl 3 and genipin cross-linkers resulted in the formation of novel hydrogels with compressive strengths of (15.43–22.20 MPa), which are comparable to those of natural cortical bone . In vivo evaluation was conducted by creating calvarial defects (6 mm) in Sprague–Dawley male rats. The results showed the formation of new, full-thickness bone at the implantation sites in all groups, as evidenced by digital planar tomography and histological staining with Hematoxylin and Eosin stain (H & E). Additionally, the use of genipin as a cross-linker positively affected the hydrogel's hydrophilicity and porosity. These findings justify further investigation into the potential of these nanocomposite hydrogels for bone regeneration applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-41413-w