Controlled Release of DEET Loaded on Fibrous Mats from Electrospun PMDA/Cyclodextrin Polymer
Electrospun beta-cyclodextrin (βCD)-based polymers can combine a high surface-to-volume ratio and a high loading/controlled-release-system potential. In this work, pyromellitic dianhydride (PMDA)/βCD-based nanosponge microfibers were used to study the capability to host a common insect repellent ( ,...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2018-07, Vol.23 (7), p.1694 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrospun beta-cyclodextrin (βCD)-based polymers can combine a high surface-to-volume ratio and a high loading/controlled-release-system potential. In this work, pyromellitic dianhydride (PMDA)/βCD-based nanosponge microfibers were used to study the capability to host a common insect repellent (
,
-diethyl-3-toluamide (DEET)) and to monitor its release over time. Fibrous samples characterized by an average fibrous diameter of 2.8 ± 0.8 µm were obtained and subsequently loaded with DEET, starting from a 10 g/L diethyl ether (DEET) solution. The loading capacity of the system was assessed via HPLC/UV⁻Vis analysis and resulted in 130 mg/g. The releasing behavior was followed by leaving fibrous DEET-loaded nanosponge samples in air at room temperature for a period of between 24 h and 2 weeks. The releasing rate and the amount were calculated by thermogravimetric analysis (TGA), and the release of the repellent was found to last for over 2 weeks. Eventually, both the chemical composition and sample morphology were proven to play a key role for the high sample loading capacity, determining the microfibers' capability to be applied as an effective controlled-release system. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules23071694 |