Remote inspection of adversary-controlled environments

Remotely monitoring the location and enduring presence of valuable items in adversary-controlled environments presents significant challenges. In this article, we demonstrate a monitoring approach that leverages the gigahertz radio-wave scattering and absorption of a room and its contents, including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-10, Vol.14 (1), p.6566-6566, Article 6566
Hauptverfasser: Tobisch, Johannes, Philippe, Sébastien, Barak, Boaz, Kaplun, Gal, Zenger, Christian, Glaser, Alexander, Paar, Christof, Rührmair, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Remotely monitoring the location and enduring presence of valuable items in adversary-controlled environments presents significant challenges. In this article, we demonstrate a monitoring approach that leverages the gigahertz radio-wave scattering and absorption of a room and its contents, including a set of mirrors with random orientations placed inside, to remotely verify the absence of any disturbance over time. Our technique extends to large physical systems the application of physical unclonable functions for integrity protection. Its main applications are scenarios where parties are mutually distrustful and have privacy and security constraints. Examples range from the verification of nuclear arms-control treaties to the securing of currency, artwork, or data centers. Physical unclonable functions (PUFs) normally ensure authentication of small physical objects. Here, instead, the authors observe that also rooms and buildings can serve as PUFs. They apply this insight to monitor the integrity of enclosed environments, such as art galleries, bank vaults, or data centers.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-42314-2