Can Modification of Sowing Date and Genotype Selection Reduce the Impact of Climate Change on Sunflower Seed Production?

Climate change projections for the 21st century pose great threats to semi-arid regions, impacting seed production and the quality of sunflowers. Crop yields are negatively affected by climate variability, especially in the event of droughts during the crucial growth stages. Understanding the relati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agriculture (Basel) 2023-11, Vol.13 (11), p.2149
Hauptverfasser: Krstić, Miloš, Mladenov, Velimir, Banjac, Borislav, Babec, Brankica, Dunđerski, Dušan, Ćuk, Nemanja, Gvozdenac, Sonja, Cvejić, Sandra, Jocić, Siniša, Miklič, Vladimir, Ovuka, Jelena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change projections for the 21st century pose great threats to semi-arid regions, impacting seed production and the quality of sunflowers. Crop yields are negatively affected by climate variability, especially in the event of droughts during the crucial growth stages. Understanding the relationships between agrometeorological, genetic, and agronomic factors is crucial for maintaining crop sustainability. Optimal sowing dates are an essential condition for maximizing crop genetic potential, but challenges come from annual weather variations. This study analyzes how sunflower genotypes respond to different sowing dates under climate change and focuses on the conditions for obtaining maximum seed yields and favorable agronomic traits. From 2020 to 2022, the experiment featured six genotypes sown across four different dates at two-week intervals, simulating seed sunflower production. The results obtained by ANOVA indicated that the seed yield and oil yield were significantly affected by the sowing date, the genotype, and their interaction, with coefficients of variation ranging from 7.6% for oil yield to 41.1% for seed yield. Besides seed yield and oil yield, LDA biplot and Discriminant Functions confirmed that seed germination energy also played a significant role in separating genotypes into clusters. A Visual Mixed Model showed that shifting the optimal sowing date (mid-April) to early May allows a reduction in the number of days the plants spend in critical growth stages, thereby escaping stressful conditions during pollination and seed filling. The findings resulted, on average, in increased yields and improved seed quality, which are the primary goals of seed production, but not in increased 1000-seed weight. Notably, high temperatures during the critical sunflower growth stages negatively affected the measured parameters of seed production. The increased precipitation during seed filling boosted the 1000-seed mass and seed yield. Extended flowering reduced the growth rate and seed germination, but longer seed filling increased the 1000-seed mass and seed yield. Our future breeding goals will be to create genotypes with a shorter flowering period and an extended seed-filling period to better respond to climate change.
ISSN:2077-0472
2077-0472
DOI:10.3390/agriculture13112149