Galois realizability of groups of orders p 5 and p 6
Let p be an odd prime and k an arbitrary field of characteristic not p. We determine the obstructions for the realizability as Galois groups over k of all groups of orders p 5 and p 6 that have an abelian quotient obtained by factoring out central subgroups of order p or p 2. These obstructions are...
Gespeichert in:
Veröffentlicht in: | Open mathematics (Warsaw, Poland) Poland), 2013-05, Vol.11 (5), p.910-923 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p be an odd prime and k an arbitrary field of characteristic not p. We determine the obstructions for the realizability as Galois groups over k of all groups of orders p
5 and p
6 that have an abelian quotient obtained by factoring out central subgroups of order p or p
2. These obstructions are decomposed as products of p-cyclic algebras, provided that k contains certain roots of unity. |
---|---|
ISSN: | 2391-5455 2391-5455 |
DOI: | 10.2478/s11533-013-0217-9 |