Automatically identifying the function and intent of posts in underground forums

The automatic classification of posts from hacking-related online forums is of potential value for the understanding of user behaviour in social networks relating to cybercrime. We designed annotation schema to label forum posts for three properties: post type, author intent, and addressee. The post...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crime science 2018-01, Vol.7 (1), p.19-14, Article 19
Hauptverfasser: Caines, Andrew, Pastrana, Sergio, Hutchings, Alice, Buttery, Paula J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The automatic classification of posts from hacking-related online forums is of potential value for the understanding of user behaviour in social networks relating to cybercrime. We designed annotation schema to label forum posts for three properties: post type, author intent, and addressee. The post type indicates whether the text is a question, a comment, and so on. The author’s intent in writing the post could be positive, negative, moderating discussion, showing gratitude to another user, etc. The addressee of a post tends to be a general audience (e.g. other forum users) or individual users who have already contributed to a threaded discussion. We manually annotated a sample of posts and returned substantial agreement for post type and addressee, and fair agreement for author intent. We trained rule-based (logical) and machine learning (statistical) classification models to predict these labels automatically, and found that a hybrid logical–statistical model performs best for post type and author intent, whereas a purely statistical model is best for addressee. We discuss potential applications for this data, including the analysis of thread conversations in forum data and the identification of key actors within social networks.
ISSN:2193-7680
2193-7680
DOI:10.1186/s40163-018-0094-4