Studying of COVID-19 fractional model: Stability analysis
This article focuses on the recent epidemic caused by COVID-19 and takes into account several measures that have been taken by governments, including complete closure, media coverage, and attention to public hygiene. It is well known that mathematical models in epidemiology have helped determine the...
Gespeichert in:
Veröffentlicht in: | Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters 2023-06, Vol.7, p.100470, Article 100470 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article focuses on the recent epidemic caused by COVID-19 and takes into account several measures that have been taken by governments, including complete closure, media coverage, and attention to public hygiene. It is well known that mathematical models in epidemiology have helped determine the best strategies for disease control. This motivates us to construct a fractional mathematical model that includes quarantine categories as well as government sanctions. In this article, we prove the existence and uniqueness of positive bounded solutions for the suggested model. Also, we investigate the stability of the disease-free and endemic equilibriums by using the basic reproduction number (BRN). Moreover, we investigate the stability of the considering model in the sense of Ulam–Hyers criteria. To underpin and demonstrate this study, we provide a numerical simulation, whose results are consistent with the analysis presented in this article. |
---|---|
ISSN: | 2666-8181 2666-8181 |
DOI: | 10.1016/j.padiff.2022.100470 |