Catalytic amidation of natural and synthetic polyol esters with sulfonamides

Triacylglycerides are naturally abundant and renewable feedstock for biofuels and chemicals. In this report, these seemingly stable compounds are shown to be reactive toward a variety of sulfonamides under Lewis acid catalysis. In these reactions, alkyl C(sp 3 )–O bonds are cleaved and C–N bonds con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-08, Vol.10 (1), p.3881-10, Article 3881
Hauptverfasser: Liu, Hua, Zhu, Yi-Ling, Li, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Triacylglycerides are naturally abundant and renewable feedstock for biofuels and chemicals. In this report, these seemingly stable compounds are shown to be reactive toward a variety of sulfonamides under Lewis acid catalysis. In these reactions, alkyl C(sp 3 )–O bonds are cleaved and C–N bonds constructed, providing functionalized value-added products directly from renewables. Mechanistic and scope study demonstrate that the origin of the reactivity could be the synergy of Lewis acid catalysis and neighboring group participation by the 2- or 3-acyloxy or acylamido group with respect to the reactive site. Since poly(ethylene terephthalate) (PET), a widely available consumer polyester, also contains 1,2-diol diester group as the repeating unit in the main chain, this chemistry can also be applied to efficient depolymerization of PET. Triacylglycerides are naturally abundant and renewable feedstock, but their chemical transformation is hindered by their stability. Here, under Lewis acid catalysis, the authors report the selective alkyl C–O bond conversion of triglycerides into C–N bonds and even apply this efficient method to PET depolymerization.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-11864-9