Effect of electron-withdrawing fluorine and cyano substituents on photovoltaic properties of two-dimensional quinoxaline-based polymers

In this study, strong electron-withdrawing fluorine (F) and cyano (CN) substituents are selectively incorporated into the quinoxaline unit of two-dimensional (2D) D–A-type polymers to investigate their effects on the photovoltaic properties of the polymers. To construct the 2D polymeric structure, e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-12, Vol.11 (1), p.24381-24381, Article 24381
Hauptverfasser: Lee, Seok Woo, Hussain, MD. Waseem, Shome, Sanchari, Ha, Su Ryong, Oh, Jae Taek, Whang, Dong Ryeol, Kim, Yunseul, Kim, Dong-Yu, Choi, Hyosung, Chang, Dong Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, strong electron-withdrawing fluorine (F) and cyano (CN) substituents are selectively incorporated into the quinoxaline unit of two-dimensional (2D) D–A-type polymers to investigate their effects on the photovoltaic properties of the polymers. To construct the 2D polymeric structure, electron-donating benzodithiophene and methoxy-substituted triphenylamine are directly linked to the horizontal and vertical directions of the quinoxaline acceptor, respectively. After analyzing the structural, optical, and electrochemical properties of the resultant F- and CN-substituted polymers, labeled as PBCl-MTQF and PBCl-MTQCN, respectively, inverted-type polymer solar cells with a non-fullerene Y6 acceptor are fabricated to investigate the photovoltaic performances of the polymers. It is discovered that the maximum power conversion efficiency of PBCl-MTQF is 7.48%, whereas that of PBCl-MTQCN is limited to 3.52%. This significantly reduced PCE of the device based on PBCl-MTQCN is ascribed to the formation of irregular, large aggregates in the active layer, which can readily aggravate the charge recombination and charge transport kinetics of the device. Therefore, the photovoltaic performance of 2D quinoxaline-based D–A-type polymers is significantly affected by the type of electron-withdrawing substituent.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-03763-1