Experimental study on the influence of recycled aggregates on the mechanical properties of concrete

Construction solid waste has become an important environmental pollution source in the city, and the treatment and application of construction solid waste has become the focus of attention. Construction waste recycled aggregates have defects such as high water absorption and micro cracks, which affe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Chuangui, Zhao, Hongkui, Wu, Jianfeng, Li, Xiangang, Zhang, Ya
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Construction solid waste has become an important environmental pollution source in the city, and the treatment and application of construction solid waste has become the focus of attention. Construction waste recycled aggregates have defects such as high water absorption and micro cracks, which affect its extensive application. In order to improve the utilization rate of recycled aggregates, the influence of different replacement rates of recycled aggregates on the mechanical properties of concrete is studied in this paper. The results show that with the increase of replacement rate of recycled aggregates, the 3-day, 7-day and 28-day compressive strength, splitting strength and cohesive force of concrete decrease gradually, but the mechanical properties of concrete decrease slowly at 3 days and 7 days, and decrease obviously at 28 days. Moreover, with the increase of replacement rate of recycled aggregates, the decline trend of mechanical properties is not obvious. Compared with natural aggregate concrete, the 28-day compressive strength, splitting strength and cohesive force of 100% recycled aggregate concrete are reduced by 16.1%, 20.1% and 18.1% respectively, but the mechanical properties meet the requirements of C30 concrete, which provides a reference for engineering application.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202128301033