Emission ratios of trace gases and particles for Siberian forest fires on the basis of mobile ground observations

Boreal forest fires are currently recognized as a significant factor in climate change and air quality problems. Although emissions of biomass burning products are widely measured in many regions, there is still lack of information on the composition of wildfire emissions in Siberia, a region known...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2017-10, Vol.17 (20), p.12303-12325
Hauptverfasser: Vasileva, Anastasia, Moiseenko, Konstantin, Skorokhod, Andrey, Belikov, Igor, Kopeikin, Vladimir, Lavrova, Olga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Boreal forest fires are currently recognized as a significant factor in climate change and air quality problems. Although emissions of biomass burning products are widely measured in many regions, there is still lack of information on the composition of wildfire emissions in Siberia, a region known for its severe wildfire activity. Emission ratios (ERs) are important characteristics of wildfire emissions as they may be used to calculate the mass of species emitted into the atmosphere due to combustion of a known mass of biomass fuel. We analyze observations of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), total nonmethane hydrocarbons (NMHCs), nitrogen oxides NOx ( =  NO + NO2), particulate matter (PM3), and black carbon (BC) within two forest fire plume transects made by the moving railway observatory during TRanscontinental Observations Into the Chemistry of the Atmosphere (TROICA) expeditions. Slopes in linear regressions of excess levels of the pollutants are used to obtain ERCO ∕ CO2 = 10–15 %, ERCH4 ∕ CO = 8–10 %, ERNMHC ∕ CO = 0.11–0.21 % ppmC ppmC−1, ERNOx ∕ CO = 1.5–3.0  ppb ppm−1, ERPM3 ∕ CO = 320–385 ng m−3 (µg m−3)−1, and ERBC ∕ CO =  6.1–6.3 µg m−3 ppm−1, which fall within the range of uncertainty of the previous estimates, being at the higher edge for ERCH4 ∕ CO, ERNMHC ∕ CO, and ERPM3 ∕ CO and at the lower edge for ERNOx ∕ CO. The relative uncertainties comprise 5–15 % of the estimated ERCH4 ∕ CO, ERNMHC ∕ CO, and ERPM ∕ CO and 10–20 % of ERNOx ∕ CO, ERCO ∕ CO2, and ERBC ∕ CO. The uncertainties are lower than in many other similar studies and associated mainly with natural variability of wildfire emissions.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-17-12303-2017