Global Existence and Asymptotic Behavior of Self-Similar Solutions for the Navier-Stokes-Nernst-Planck-Poisson System in ℝ3
We study the Navier-Stokes-Nernst-Planck-Poisson system modeling the flow of electrohydrodynamics. For small initial data, the global existence, uniqueness, and asymptotic stability as time goes to infinity of self-similar solutions to the Cauchy problem of this system posed in the whole three dimen...
Gespeichert in:
Veröffentlicht in: | International journal of differential equations 2011, Vol.2011 (2011), p.1-19 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Navier-Stokes-Nernst-Planck-Poisson system modeling the flow of electrohydrodynamics. For small initial data, the global existence, uniqueness, and asymptotic stability as time goes to infinity of self-similar solutions to the Cauchy problem of this system posed in the whole three dimensional space are proved in the function spaces of pseudomeasure type. |
---|---|
ISSN: | 1687-9643 1687-9651 |
DOI: | 10.1155/2011/329014 |