Shading, Dusting and Incorrect Positioning of Photovoltaic Modules as Important Factors in Performance Reduction
The amount of solar radiation reaching the front cover of a photovoltaic module is crucial for its performance. A number of factors must be taken into account at the design stage of the solar installation, which will ensure maximum utilization of the potential arising from the location. During the o...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2020-04, Vol.13 (8), p.1992 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The amount of solar radiation reaching the front cover of a photovoltaic module is crucial for its performance. A number of factors must be taken into account at the design stage of the solar installation, which will ensure maximum utilization of the potential arising from the location. During the operation of a photovoltaic installation, it is necessary to limit the shading of the modules caused by both dust and shadowing by trees or other objects. The article presents an analysis of the impact of the radiation reaching the surface of the radiation module on the efficiency obtained. Each of the analyzed aspects is important for obtaining the greatest amount of energy in specific geographical conditions. Modules contaminated by settling dust will be less efficient than those without deposits. The results of experimental studies of this effect are presented, depending on the amount of impurities, including their origins and morphologies. In practice, it is impossible to completely eliminate shadowing caused by trees, uneven terrain, other buildings, chimneys, or satellite dishes, and so on, which limits the energy of solar radiation reaching the modules. An analysis of partial shading for the generated power was also carried out. An important way for maximizing the incoming radiation is the correct positioning of the modules relative to the sun. It is considered optimal to position the modules relative to the light source, that is, the sun, so that the rays fall perpendicular to the surfaces of the modules. Any deviation in the direction of the rays results in a loss in the form of a decrease in the available power of the module. The most beneficial option would be to use sun-tracking systems, but they represent an additional investment cost, and their installations require additional space and maintenance. Therefore, the principle was adopted that stationary systems should be oriented to the south, using the optimal angle of inclination of the module surface appropriate for the location. This article presents the dependence of the decrease in obtained power on the angle of deviation from the optimal one. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13081992 |