Underwater wireless sensor network-based multihop data transmission using hybrid cat cheetah optimization algorithm

For the conservation and sustainable use of the oceanic environment, monitoring of underwater regions is ineluctable and is effectuated with the aid of an underwater wireless sensor network. It is accoutered with smart equipment, vehicles and sensors and utilized for the transmission of acquired dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-07, Vol.13 (1), p.10810-10810, Article 10810
Hauptverfasser: Vijay, M. M., Sunil, J., Vincy, V. G. Anisha Gnana, IjazKhan, M., Abdullaev, Sherzod Shukhratovich, Eldin, Sayed M., Govindan, Vediyappan, Ahmad, Hijaz, Askar, Sameh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the conservation and sustainable use of the oceanic environment, monitoring of underwater regions is ineluctable and is effectuated with the aid of an underwater wireless sensor network. It is accoutered with smart equipment, vehicles and sensors and utilized for the transmission of acquired data from the monitoring region and forwarded to the sink nodes (SN) where the data are retrieved. Moreover, data transmission from sensor nodes to SN is complicated by the aquatic environment's inherent complexities. To surpass those issues, the work in this article focusesto propose a Hybrid Cat Cheetah optimization algorithm (HC 2 OA) that purveys the energy efficient clustering based routing. The network is then partitioned into numerous clusters, each of which is led by a cluster head (CH) and comprised of many sub-clusters (CM). Based on the factors such as distance and residual energy the CH selection is optimized and collects data from the respective CMs and forwarded to the SN with a multi-hop transmission approach. The proposed HC 2 OA chooses the optimized multi-hop route from the CH to SN. Thus mitigates the complexities over multi-hop routing and CH selection. Simulations are effectuated in the NS2 simulator and analyzed the performance. The results of the study show that the proposed work has significant advantages over state-of-the-art works in terms of network lifetime, packet delivery ratio, and energy consumption. The energy consumption of the proposed work is 0.2 J with a packet delivery ratio is 95%.The network life time of proposed work, with respect to the coverage area around 14 km is approximately 60 h.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-37952-x