O-Antigen decorations in Salmonella enterica play a key role in eliciting functional immune responses against heterologous serovars in animal models

Different serovars of Salmonella enterica cause systemic diseases in humans including enteric fever, caused by S. Typhi and S. Paratyphi A, and invasive nontyphoidal salmonellosis (iNTS), caused mainly by S. Typhimurium and S. Enteritidis. No vaccines are yet available against paratyphoid fever and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in cellular and infection microbiology 2024-02, Vol.14, p.1347813-1347813
Hauptverfasser: Gasperini, Gianmarco, Massai, Luisa, De Simone, Daniele, Raso, Maria Michelina, Palmieri, Elena, Alfini, Renzo, Rossi, Omar, Ravenscroft, Neil, Kuttel, Michelle M, Micoli, Francesca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Different serovars of Salmonella enterica cause systemic diseases in humans including enteric fever, caused by S. Typhi and S. Paratyphi A, and invasive nontyphoidal salmonellosis (iNTS), caused mainly by S. Typhimurium and S. Enteritidis. No vaccines are yet available against paratyphoid fever and iNTS but different strategies, based on the immunodominant O-Antigen component of the lipopolysaccharide, are currently being tested. The O-Antigens of S. enterica serovars share structural features including the backbone comprising mannose, rhamnose and galactose as well as further modifications such as O-acetylation and glucosylation. The importance of these O-Antigen decorations for the induced immunogenicity and cross-reactivity has been poorly characterized. These immunological aspects were investigated in this study using Generalized Modules for Membrane Antigens (GMMA) as delivery systems for the different O-Antigen variants. This platform allowed the rapid generation and in vivo testing of defined and controlled polysaccharide structures through genetic manipulation of the O-Antigen biosynthetic genes. Results from mice and rabbit immunization experiments highlighted the important role played by secondary O-Antigen decorations in the induced immunogenicity. Moreover, molecular modeling of O-Antigen conformations corroborated the likelihood of cross-protection between S. enterica serovars. Such results, if confirmed in humans, could have a great impact on the design of a simplified vaccine composition able to maximize functional immune responses against clinically relevant Salmonella enterica serovars.
ISSN:2235-2988
2235-2988
DOI:10.3389/fcimb.2024.1347813