Deep learning-based scoring of tumour-infiltrating lymphocytes is prognostic in primary melanoma and predictive to PD-1 checkpoint inhibition in melanoma metastasesResearch in context

Background: Recent advances in digital pathology have enabled accurate and standardised enumeration of tumour-infiltrating lymphocytes (TILs). Here, we aim to evaluate TILs as a percentage electronic TIL score (eTILs) and investigate its prognostic and predictive relevance in cutaneous melanoma. Met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EBioMedicine 2023-07, Vol.93, p.104644
Hauptverfasser: Eftychia Chatziioannou, Jana Roßner, Thazin New Aung, David L. Rimm, Heike Niessner, Ulrike Keim, Lina Maria Serna-Higuita, Irina Bonzheim, Luis Kuhn Cuellar, Dana Westphal, Julian Steininger, Friedegund Meier, Oltin Tiberiu Pop, Stephan Forchhammer, Lukas Flatz, Thomas Eigentler, Claus Garbe, Martin Röcken, Teresa Amaral, Tobias Sinnberg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Recent advances in digital pathology have enabled accurate and standardised enumeration of tumour-infiltrating lymphocytes (TILs). Here, we aim to evaluate TILs as a percentage electronic TIL score (eTILs) and investigate its prognostic and predictive relevance in cutaneous melanoma. Methods: We included stage I to IV cutaneous melanoma patients and used hematoxylin-eosin-stained slides for TIL analysis. We assessed eTILs as a continuous and categorical variable using the published cut-off of 16.6% and applied Cox regression models to evaluate associations of eTILs with relapse-free, distant metastasis-free, and overall survival. We compared eTILs of the primaries with matched metastasis. Moreover, we assessed the predictive relevance of eTILs in therapy-naïve metastases according to the first-line therapy. Findings: We analysed 321 primary cutaneous melanomas and 191 metastatic samples. In simple Cox regression, tumour thickness (p 
ISSN:2352-3964
2352-3964